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Abstract— Humanoid robots that need to traverse
constrained and uncertain environments require a
suitable combination of perception, planning and con-
trol. This paper presents an integrated pipeline that
allows the robot to autonomously acquire visual infor-
mation, define step locations, compute feasible multi-
contact stances using hands and feet, and generate
a motion plan to reach the desired goal even going
through different contact states. The execution of the
desired path is guaranteed through a passivity-based
multi-contact controller. The approach is evaluated
in simulations and experiments in different scenarios
using the humanoid robot TORO.

I. Introduction

Research in humanoid robotics is veering nowadays
towards autonomous operation in challenging environ-
ments, e.g. disaster scenarios. Such conditions might
require from the robot the ability to use multi-contact
interactions with the environment in order to cope with
situations such as traversing a field of debris, egressing
from a car or climbing stairs using a handrail, as demon-
strated in the recent DARPA Robotics Challenge [1]–[3].
Several challenges arise when solving these situations,
including perception of the terrain, determination of
possible contact areas, and generation of a suitable tra-
jectory to reach the goal position even by interacting with
the environment to enhance the stability of the robot.

This paper presents an integrated framework to enable
a humanoid robot to interact with an unknown environ-
ment. The approach contains four major components:
perception of the terrain, step planning, multi-contact
motion planning, and multi-contact control. First, as the
environment is unknown, the robot must acquire images,
recognize suitable geometries for potential contacts and
obstacles to be avoided, and create a map that can be
dynamically expanded as more information is flowing in.
This requires the fusion of inertial and visual information
into a world model that is later segmented into primitive
geometries. For contacts with the feet, flat regions that
can accommodate the foot size are searched for in the
image. Solutions to this problem have been proposed
based on convex optimization [4]. To find such regions,
we use a region growing algorithm that quickly identifies
flat surfaces, then we apply restrictions on the maximum
slope allowed for the stepping surfaces, and identify and
store the maximum hull contained within each feasible
plane. For the perception pipeline, a similar approach
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has been previously considered [5], but tested only in
simulation. The real implementation must deal with the
imprecision coming from the robot sensors; to keep a
consistent alignment of successive frames, we use an
alignment based on strong landmarks on the scene.

The problem of step planning, or finding a list of step
locations to reach a desired goal, has been solved using
basically two families of techniques: discrete searches and
continuous optimizations. Discrete searches in general
require some way to estimate possible displacements from
one step to the other, using for instance approximations
to the reachable space for the feet [6], or a predefined set
of possible footstep locations [7]; the sequence of steps
is usually obtained with an A* or RRT algorithm. The
problem can also be formulated as an optimization prob-
lem on the poses of the footsteps [4], [8], but also using
some sort of geometric approximation to the reachable
regions for the footstep locations. In our approach, we use
the reachability of the leg given by a capability map [9]
to find the real locations of the foot that can be reached
from a given configuration; the combination of this map
with the real vision data provides the online estimation
of feasible footholds.

Once possible locations of the contacts have been
determined, either automatically or manually, a suitable
motion plan must be found to take the robot from the ini-
tial to the final configuration while traversing stages with
different contact configurations. During the whole motion
different constraints must be simultaneously respected:
overall stability, joint and torque limits, and collision and
self-collision avoidance. A multi-level hierarchical control
structure that allows prioritization of the constraints was
formulated in [10]. Another approach that combines a
best-first search on the space of contacts with a posture
generator solved as a non-linear optimization problem
was proposed in [11], although computational times make
this approach unfeasible for real-time generation of tra-
jectories. Our approach follows a similar structure as
the latter work. Once a set of desirable contact loca-
tions is obtained, the feasibility of the set is evaluated
with a hierarchical inverse kinematics solver. Then, the
path to move from one configuration to the next one
is obtained using a modified Constrained Bidirectional
Rapidly-exploring Random Trees (CBiRRT) [12] that
explicitly handles closed kinematic chains. A higher level
planner also uses an RRT variant to plan the subse-
quent contact changes until reaching the desired goal
configuration. This implementation allows a computation
within seconds for traversing a low constrained path
using different contact states.

The planned trajectory is finally executed via a suit-
able controller. A model-based QP multi-contact con-
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Fig. 1: Pipeline used to generate quasi-static motions either from perception input (for stepping only) or manual
annotations (using additional hand contacts).

troller was for instance used in [13] for climbing a ladder
with a humanoid robot. Our balance controller is based
on passivity control, implementing a compliance that sta-
bilizes the robot by applying suitable contact wrenches to
guarantee the balance at each time step while providing
robustness to unknown external perturbations [14]. The
complete pipeline described here (Fig. 1), from percep-
tion to robust execution, was implemented and tested on
TORO, the humanoid robot developed at DLR [15], [16].
The robot is capable of autonomously moving towards
a goal configuration by exploiting multi-contact inter-
actions when required. For our current implementation,
the footstep locations are automatically computed but
the potential locations for hand contacts are manually
labeled; the robot successfully employs quasi-static tra-
jectories to reach the desired final configuration in a
constrained environment, while being robust to pertur-
bations during the execution.

The structure of the paper follows the processing
pipeline depicted in Fig. 1. Section II focuses on the per-
ception and abstraction of the environment. Section III
presents the planning of footsteps required to traverse
the terrain. The multi-contact planner is presented in
Section V, and Section VI describes the control approach
used to execute the planned paths. Finally, the simula-
tions and experiments that verify the applicability of the
approach are presented in Section VII.

II. Perception

Our robot is equipped with an Asus Xtion RGB-D
camera. The task of the perception subsystem is to
localize and perceive two modalities around the robot:
planar surfaces suitable for foot contact attachment, and
obstacles to be avoided. The surface areas of relevance for
stepping range from the footprint of the robot’s feet to
all ground around the robot. The used sensors typically
suffer two shortcomings, noise and unmodeled distortion.
Our first step in the pipeline, segmentation, is sensitive
to both. While noise is a local problem affecting fine
details in our mapping process, the distortion modifies
the depth geometry of the whole image. To minimize
the global distortion we use CLAMS - a calibration and
undistortion method proposed in [17]. CLAMS takes in
a recorded SLAM sequence from the sensor. In an off-
line phase it finds depth multiplication parameters to
make real straight lines appear straight in the depth
data as well. This improves the perception of large flat
surfaces that would otherwise appear curved in the data.
Afterward, we smooth the depth map with a 3 × 3
Gaussian kernel to lower the effects of noise.

The image processing pipeline consists of two stages:
single frame processing and continuous mapping. To
achieve better performance, the developed algorithms
operate on depth images instead of unstructured 3D
point sets.

A. Segmentation, labeling and surface extraction

After the initial undistortion and Gaussian blur filter,
the 3D point cloud is calculated using a standard pinhole
camera model. For fast estimation of surface normals
we took inspiration from [18]: Using integral images
and adjacency information from the depth image, the
normals are estimated as the cross product of vectors
from adjacent points in the 3× 3 pixel neighborhood.

The next step is the segmentation process, to separate
and label planar surfaces in the image. We use a modi-
fied non-recursive Flood fill algorithm to find connected
components in depth and normal images. Let a depth
pixel in image with coordinates i, j be denoted as D(i, j),
and N(i, j) the normal associated with this pixel. Mask
and label values are similarly M(i, j) and L(i, j). The
Flood fill algorithm operates on open-closed list to avoid
recursion:

Algorithm 1 Flood fill adjacency condition between
pixel coordinates i, j and k, l

if D(i, j)−D(k, l) ≤ depth threshold then
if ](N(i, j), N(k, l) ≤ angular threshold then

Open list ← (i, j)
end if

end if

Algorithm 1 labels each pixel from the open list to
a given value. A pixel gets evaluated if there is no label
assigned in the label image or if it is not marked as invalid
in the mask image. The label is determined in an outer
routine that calls the Flood fill on every non-visited pixel.
The next pass through the image collects additional
information for each label - average normal direction and
a member count. Member count determines how large
the flat surface is, while the average normal gives the
direction. The label image typically contains a lot of
noise and several large clusters. All the labels containing
under 1% member pixels of the whole image are not
considered for further processing. The remaining clusters
are checked for orientation, leaving only those whose
normals do not deviate more than a given threshold
from the gravity vector provided by state estimation.
These are the clusters of interest. Due to noise, they
might contain small holes, which are corrected by calling
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Fig. 2: Segmentation process on depth and normals:
a) Color image of a test scene; b) Output of flood fill
clustering; c) Clusters of interest with different labels af-
ter they were grown; d) Hulls delimiting the flat surfaces.

a region growing process on each cluster of interest.
Connected pixels are re-evaluated, and their label is
changed if they fall within a given tolerance of a plane
defined by the cluster parameters.

At this point we have obtained segmented planar sur-
faces with a normal direction within the given tolerance
for deviation from the gravity vector. One more pass
over the label map is required to select the boundaries
of the clusters of interest. A boundary pixel is a labeled
pixel having a neighbor of different label. At this stage,
the boundary pixels are extracted as 3D points into
unorganized 3D point sets. Fig. 2 shows an example of
the full segmentation process.

B. Continuous mapping

The field of view of a camera covers only a small part
of the environment and is not useful for planning more
than a few steps. Therefore, we have built a mapping
solution that creates a consistent map of the perceived
feasible stepping areas. As the camera moves, every new
frame is processed and the map is updated with the new
set of extracted hulls.

The mapping procedure is initialized with the first
frame. While the output map is always transformed
into the world frame, the internal state of the map and
camera tracking is always related to the first received
frame. The 3D point sets received from segmentation
are hulls, i.e. boundary points of planar surfaces in the
scene. Each newly received frame is processed in the same
way. The points and hull parameters are transformed
through the last known camera pose to be aligned with
the initial frame. The first guess of the assignment of
the hulls is made based on the centroid proximity. The
centroid is calculated in the segmentation step using
all the member points of the hull, which makes the
measurement more stable. If there are at least three
successful matches in the scene, we are able to compute
a covariance matrix and obtain the rigid transformation
between the new frame and the map. The advantage
of aligning only the centroid compared to a full ICP
solution is the computational speed. At this point it is not
guaranteed that the alignment was successful; therefore,
the process of correspondence assignment is repeated

again. If the correspondences have not changed compared
to the situation before the alignment, we proceed to fuse
the newly observed hulls with the map. Unmatched hulls
are considered as new hulls and are added without fusion.

If the hull to be added overlaps with a previously seen
hull, the two hulls are fused. This typically happens when
a planar surface is only partially perceived and it gets
into the field of view during motion. Two hulls are fused
as follows. The centroids and normals of the hulls are
updated using a low pass filter with 1

5 gain on the new
observation. The points are fused and simplified through
an angular descriptor that discretizes the 0 to 2π range
into a user defined number of bins. Upon adding a hull to
the map, a zero orientation vector is arbitrarily chosen,
going from the centroid to one arbitrary member point
of the boundary. Each point in the hull is assigned to a
bin bi according to the angle from the zero vector in the
plane of the hull. The new hull boundary is described
by only one point per bin; it is the farthest point from
the centroid, regardless of whether it comes from the
new observation or from the previously simplified map.
This process downsamples the boundary point set, which
improves the performance of the path planner. It also
helps us to handle the corner cases when planes appear
and disappear while going in and out of the field of view.

An example of resulting map with the continuous map-
ping process is presented in Fig. 3. The image processing
pipeline employed here runs at 25Hz on a single core PC.

(a) Scene view

01234 m

(b) Mapping of the planes

Fig. 3: Map generated by continuous mapping.

III. Step Planning

To provide a sequence of realizable footsteps in the
perceived terrain we use a sampling-based step planning
method. The approach takes into account the environ-
ment, represented as support planes, and efficiently ex-
ploits precomputed knowledge about the capabilities of
the robot.

A. Robot capabilities

The step planner relies on a quick validation of a
large number of feasible footstep locations. A feasible
footstep requires a suitable support surface in the envi-
ronment, which should be reachable given the kinematic
constraints of the robot. To be able to efficiently evaluate
hundreds of possible footsteps, we rely on a pre-computed
exhaustive map of feasible step locations relative to
the current stance foot, similar to the capability maps
commonly used in manipulation [9].

To build the map, the swing leg workspace is dis-
cretized with a resolution of 0.025m in all three trans-
lation directions and with 18 orientations of the frame,
covering an angle of 150◦ in front of the foot. This yields
42716 footstep candidates. The generated foot positions



are validated by the multi-contact planner, which can
verify up to 1500 swing foot positions per millisecond
on the perceived terrain. If a valid solution within all
considered constraints is found, the goal frame for the
swing foot is marked as reachable.

B. Step planner

The step planner generates a series of feasible footsteps
from the start stance Nstart to a given target stance
Ngoal. A graph-based approach is used here, where the
nodes of the graph are contact frame locations of the
stance foot and the edges are steps from the map of
feasible steps. Alg. 2 summarizes the planning approach.
The first node is the initial stance. The planner ex-
pands the graph by projecting the capability map for the
swing foot onto the current environment, thus finding
feasible foot frames relative to the current stance. The
validation function, has support() in Alg. 2, tests if all
four corner points of the foot are inside one of the support
planes. A priority queue is used to order the new nodes
generated through this expansion process, with a cost
function given by

Γ(N) = fstate(N) + fpath(N) (1)

fstate(N) = w0|xgoal − xN |+ w1|φgoal − φN | (2)

fpath(N) = w2

N∑
Nstart

|zi+1 − zi| (3)

where x and z are the horizontal and vertical component
of the goal position, φ the yaw rotation, and wi suitable
weights. The weights were selected to maximize step
lengths, prevent unnecessary changes of orientation and
side walking, and favor stepping on supports of similar
height. The process is repeated until a goal is successfully
reached or the maximum number of allowed iterations is
exceeded. The final step sequence is determined through
backward traversal of the graph, and it is passed on to the
multi-contact planner to generate complete robot poses.
An illustration of this planning process is shown in Fig. 4,
with a typical processing time under 1 second.

Algorithm 2 Generate a feasible footstep sequence

queue = [Nstart]
while size(queue)! = 0 do

Nbest = sort(queue,Γ)[0]
for s in step list do

Nnew = Nbest + s
if has support(Nnew) then

if norm(Nnew −Ngoal) ≤ thr then
return Path(Nstart, Nnew)

else
Insert Nnew → queue

end if
end if

end for
end while

IV. Modelling

The dynamics of a humanoid robot can be described
using a model with free-floating base (e.g. the hip). But
as we presented in [14], it is also possible to choose the

Fig. 4: Generation of a feasible path on the set of hulls.

location of the CoM xc ∈ R3 and the orientation of the
hip Rb ∈ R3×3 as base coordinates. The corresponding
translational and rotational velocities are given by ẋc and
ωb ∈ R3, which can be combined into vc = ( ẋTc ωTb )

T
.

Considering the angles q ∈ Rn and velocities q̇ of the n
joints, the floating-base dynamics is given by

M

(
v̇c
q̈

)
+C

(
vc
q̇

)
+

(
mg0
0

)
=

(
0
τ

)
+ τ ext. (4)

Here, M(q) ∈ R(6+n)×(6+n) denotes the inertia matrix,
C(q, v̇, q̇) ∈ R(6+n)×(6+n) the Coriolis and centrifugal
matrix, and g(q) the gravity vector1. The control torques
are given by τ ∈ Rn, and the influence of external forces
by τ ext ∈ R6+n. In case that all the external forces are
exclusively acting on the Ψ end effectors, τ ext is given by

τ ext =

Ψ∑
i=1

JTi F i (5)

with F i ∈ R6 being the wrench at the i-th end effector
and J i ∈ R(6+n)×6 the corresponding Jacobian matrix.

Furthermore, each end effector in contact with the
environment is subjected to a contact model F i ∈ Fi
limiting the transmittable wrench F i by

fi,z ≥ fmin
i,z ∀i = 1 . . . ψ, (6)∣∣fi,x/y∣∣ ≤ µifi,z ∀i = 1 . . . ψ, (7)

|τi,z| ≤ µ̃ifi,z ∀i = 1 . . . ψ, (8)

pi,x/y ∈
[
pmin
i,x/y, p

max
i,x/y

]
∀i = 1 . . . ψ (9)

In order to reduce the complexity for the planner and the
controller, we assume that each contact has a rectangular
contact area with longitudinal and transversal axis given
by the x- and y-axis of the end effector frame Ti.
The z-axis is perpendicular to the contact surface. The
unilaterality of the contact is taken into account by (6)
limiting the perpendicular contact force to a minimum
of fmin

i,z . In order to prevent the end effector from tilting,
the Center of Pressure (CoP) pi ∈ R3 is restricted by
(9) to lie within the contact surface . The friction at the
contact surface is approximated with three linear and

1For the sake of simplicity, all the dependencies will be dropped
out of the notations for the remainder of this paper.



independent constraints given by (7) and (8), limiting
fi,x, fi,y and τi,z. Note that any of the constraints (6)
to (9) can be individually dropped depending on the
features of the contacts; for instance, (6) is removed in
case of a bilateral contact.

V. Multi-Contact Planning

A robot moving through a constrained space must
support its own weight using a number of contacts with
the environment. Given a model of the environment
from synthetic data or perception, the first step is to
generate possible contact points for the hands and feet.
These contact points are combined into adjacent contact
sets Sk such that only one link can be attached or
detached at a time. Thus, the transition from Sk to Sk+1

consists of either attaching or detaching one end effector.
Furthermore, the sets Sk are chosen such that they let
the robot reach a higher level goal, e.g. locomoting to a
desired location in the environment.

A contact set associates some of the end effectors with
a number of desired frames T i fixed to the environment.
The pose of the remaining end effectors can either be
left unspecified or follow a desired trajectory in Carte-
sian space. For each given contact set, a feasible quasi-
statically stable configuration yj is determined by using
a constrained inverse kinematics described in Sec. V-B.
The configuration yj can weakly depend on the previous
one yj−1 in order to minimize the motion between them.
To generate a path between yk−1 and yk we extend
the CBiRRT algorithm [12] for the case of multi-contact
interaction, as described in Sec. V-C.

A. Constraints

The proposed planning framework considers the fol-
lowing constraints:

• Joint Position Limits imposed by the geometry of
the robot.

• Self-Collisions Avoidance between robot links using
swept sphere volumes.

• Environment-Collisions Avoidance between the
robot links and the objects of the environment.

• Singularity Avoidance ensuring that the controller
is able to apply suitable contact forces.

• Joint Torque Limits given by the robot hardware.
• Quasi-Static Stability in order to maintain the bal-

ance of the robot with respect to the contact model
in (6) to (9).

B. Hierarchical Inverse Kinematics

The inverse kinematics problem is formulated as a
gradient-based optimization that minimizes the devi-
ation of all desired frames T i in Sk, and meets all
constraints described in Sec. V-A. The cost function for
the optimization is defined as

Γ(y) = xd − x(y) (10)

where xd is the desired location of the end effectors in Sk
and x(y) is their location in the current configuration y.

Taking advantage of the high redundancy of humanoid
robots, the errors associated to each constraint are mini-
mized using a null-space projector of the body Jacobians
J i of the end-effectors defined in Sk. In this manner, any
contribution to meet the constraints does not affect the

primary task, i.e., the location of the end-effectors in Sk.
Thus, a step in the gradient-based inverse kinematics is
expressed as

∆y = KJ†∆x+N0∆y1 (11)

where ∆x = xd − x, J† is the Moore-Penrose pseudoin-
verse of J ,N0 = I−J†J is the null-space projector, ∆y1
is a vector containing the contribution of the constraints
in joint space, and K is a diagonal matrix that defines
the step size and consequently the convergence time.

Generally, there are constraints that are more impor-
tant than others. For instance, we would prefer to go
into a singular configuration rather than violate the fixed
contacts. Thus, a hierarchical structure is used such that
constraints with lower hierarchical level are projected
into the null-space of constraints of higher levels, and
therefore the former ones do not affect the latter ones.
Therefore, (11) can be extended as

∆y = KJ†∆x+N0∆y1 (12)

∆y1 = K1J
†
1e1 +N1∆y2 (13)

...

∆yL−1 = KL−1J
†
L−1eL−1 +NL−1∆yL (14)

∆yL = KLJ
†
LeL (15)

with L the number of levels in the hierarchy, el the error
vector of the constraints in level l, J†l the pseudoinverse
of the constraint Jacobian J l mapping from constraint
space to joint space, N l the null-space projector of J l,
and Kl a diagonal matrix that serves to weigh different
constraints in the same level. In case that a hierarchical
level contains multiple constraints, the constraint Jaco-
bian matrices and errors are vertically stacked.

For a two level inverse kinematics, for instance, the
step ∆y is defined as

∆y = KJ†∆x+(I−J†J)[J†1e1+(I−J†1J1)J†2e2] (16)

The required Jacobians for the constraints of joint
position and singularity avoidance are analytically de-
fined. For collision constraints, numerical Jacobians are
calculated based on the penetration distance. Also, for
the quasi-static stability constraint presented in detail
below, the Jacobian is computed using finite differences.

A force distribution problem naturally arises in multi-
contact interaction, i.e., a configuration y can be asso-
ciated with a subspace of feasible contact wrenches F i.
To resolve this force-level redundancy, a quadratic pro-
gramming (QP) problem that minimizes F i is formulated
using the same contact model presented in Sec. IV [14].

Additionally, (4) and (5) give a linear mapping from
external wrenches to joint torques, which allows includ-
ing the following constraint into the QP problem

τmax ≥

∣∣∣∣∣
Ψ∑
i=1

JTi,lF i

∣∣∣∣∣ (17)

where J i,l is the joint space part of the end effector
Jacobian.

In multi-contact scenarios the contact wrenches F i are
underdetermined due to the branched kinematic chain,
which is also known as the wrench distribution problem.



Fig. 5: Average time to add a node and to find a path for
50 runs. In the upper plot, missing points denote that no
node was added to the tree, and for the lower plot that no
feasible path was found. The success rate of the CBiRRT
with the proposed Jmulti was 100% for all ε, while pure
CBiRRt with no Jmulti has an success rate of 68% only
for the lowest ε, otherwise 0%.

As this formulation combines the quasi-static stability
and joint torque limits in a QP problem, potentially no
solution exists. To detect this case, the QP minimizes
the difference between the required force on the CoM to
maintain the configuration, mg0, and the force realized
on the CoM by the contact forces F i:

eqp =

∥∥∥∥∥mg0 −
Ψ∑
i=1

JTi,uF i

∥∥∥∥∥
2

(18)

where J i,u represents the base part of the end effector
Jacobian. This quantifies if the configuration is feasible,
in which case this part of the cost function is zero. (18)
is then used as an inequality constraint in (16).

Finally, a backtracking line search algorithm finds the
local minimizer in the computed search direction ∆y.

C. Constrained Rapidly-exploring Random Trees

The planning algorithm presented here is an extension
of the CBiRRT algorithm [12]. The CBiRRT has been
previously combined with Task Space Regions [12] to
specify constraints such as closed chains. Our algorithm,
on the other hand, is able to explicitly handle closed
chains, as described below.

In order to maintain closed chains, the relative location
between the ψ end effectors that are in contact must not
change. This can be formulated as

0 = Jmulti ẏ (19)

where Jmulti contains all the relative body Jacobians
between all possible pairs of contact end effectors,

Jmulti =
[
relJT1,2

relJT1,3 . . . relJTψ−1,ψ

]T
(20)

As (19) suggests, any change ∆y in the configuration
must belong to the nullspace of Jmulti such that the
closed chains are not violated. This observation is ex-
ploited and integrated into the CBiRRT algorithm in the
way that the nodes are added to the trees.

The modified CBiRRT works as follows. First, a ran-
dom configuration qrand is sampled in joint space, and

its nearest neighbor qnear is found. Then, the step ∆q
going from qnear towards qrand is defined as

∆q = ε
(qrand − qnear)
‖qrand − qnear‖

(21)

where ε is a predefined step size. ∆q is then projected
into the null-space of Jmulti(ynear), and a candidate
configuration qcand to add to the graph is defined as

qcand = qnear + (I − J†multiJmulti)∆q. (22)

Due to drift phenomena caused by the local lineariza-
tion of the kinematics in Jmulti, an error is accumulated.
Therefore, additional constraints must be added to the
algorithm to ensure that qcand stays on or close to the
manifold. To obtain y for a given q, the kinematic
relation of one end effector in full contact is used. The
performance benefits of this approach are illustrated in
Fig. 5.

D. Joint level path generation from a contact sequence

Fig. 6: Robust generation of a feasible path using a
contact sequence [S0,S1,S2].

The planning framework so far is able to find a
configuration yk for a desired contact set S0 meeting
a list of constraints (Sec. V-B), and a path between
two configurations through the planning algorithm based
on CBiRRTs (Sec. V-C). However, to accomplish more
complex tasks such as climbing stairs a robust path gen-
eration is required, which might involve changes between
different contact sets.

A task is then defined with an initial and final con-
figuration, and a feasible joint space path to go from
the initial to the final configuration must be found. The
motion sequence contains alternating phases of moving
an end effector to a new contact and moving the center
of mass while maintaining the same contacts (Fig. 6).
Two consecutive phases interleave at one configuration
y that satisfies the conditions defined by both contact
sets. Because the solution at every step in not unique, the
planning process can lead to unfeasible configurations.
When the inverse kinematics fails, the process is repeated
with higher perturbations to detect all local minima.
If no path is found between two configurations, a new
goal configuration is generated using a different initial
condition for the inverse kinematics solver.



Fig. 7: Snapshots of the experiment climbing stairs. The main challenge of the experiment lies in the correct use of
the handrail to support the robot weight, the height of the stairs is 0.05m. The poses were optimized to have the
CoM as close as possible to the supporting foot, which results in quite large motions in the joint space.

VI. Control

To compute a trajectory from the path generated by
the planning algorithms, a minimum jerk interpolator is
used in the combined space of kinematics and contact

forces
[
yT , F i, . . .

]T
. The interpolator can thus limit

velocities and accelerations on all these components,
making it possible to scale the motion in time as required.

In order to follow the quasi-static trajectory generated
by the offline planner, we use a simplified version of
our controller presented in [14], summarized below. The
controller divides the end effectors into two groups: one
is actively used for balancing by generating the required
contact wrenches, while the other one can be used for per-
forming an interaction task like manipulating an object.
The latter group is used here for moving an end effector
to a new contact location. Without loss of generality,
let us assume that the end effectors 1 to ψ are used
for balancing, while the remaining ones (ψ + 1 to Ψ)
are used for interaction tasks. In order to maintain the
balance, the controller stabilizes the CoM position xc
and the hip orientation Rb by generating a Cartesian
compliance F c ∈ R6 consisting of a translational and
rotational stiffness- and damping matrix. The interaction
end effectors are also stabilized by a translational and
rotational Cartesian compliance, whose wrenches can
be combined into F int = ( FTψ+1 ... F

T
Ψ )

T
. The contact

wrenches generated with the balancing end effectors
F bal = ( FT1 ... FTψ )

T
will be determined in the remainder

of this section.
The desired error dynamics of the closed loop system

can be written as

M

(
v̇c
q̈

)
+C

(
vc
q̇

)
= τ ext−

(
F c
0

)
−
[
JTbal J

T
int

](
F bal

F int

)
(23)

The left hand side represents the multi-body dynamics,
which is excited by the difference between the external
forces τ ext and the wrenches the controller is supposed
to generate (F c, F bal and F int). Comparing (23) with
the dynamic model (4) leads to(

0
τ

)
=

(
mg0 − F c

0

)
−
[
JTbal,u JTint,u

JTbal,l JTint,l

](
F bal

F int

)
(24)

with Jbal and J int partitioned into Jbal,u ∈ Rψ×6,
Jbal,l ∈ Rψ×n and J int,u ∈ R(Ψ−ψ)×6, J int,l ∈ R(Ψ−ψ)×n.

The first line of (24) offers 6 equations for comput-
ing F bal, which has a size of ψ. Thus, F bal is under-
determined if more than one end effector is used for
balancing (ψ ≥ 6), which leads to a force distribution
problem. F bal is obtained by solving

min
F bal

(
F bal − F dbal

)T
Q
(
F bal − F dbal

)
(25)

with respect to the constraint

0 = mg0 − F c − J
T
bal,uF bal − JTint,uF int (26)

and to the contact model F bal ∈ Fbal specified by (6)
to (9). In the next step, the control torque is computed
using the second line of (24):

τ = −JTbal,lF bal − JTint,lF int (27)

In order to allow the controller to deal with redundant
robots and singular configurations, we added a basic null
space controller in [14]

τ ′ = τ +Nnullτ null (28)

with τ null representing a joint compliance and Nnull the
corresponding null space projector. Note that the addi-
tional torque Nnullτ null can compromise the optimality
of the force distribution, as discussed in [14], [19].

VII. Experiments

Climbing stairs while using a handrail was chosen as
the experiment to validate the approach. The constructed
setup, shown in Fig. 7, includes three 0.05m high, 0.22m
deep and 0.7m wide steps. The step depth is only 0.02m
deeper than the length of the robot feet. The associated
handrail is placed 0.75m left of the robot center and is
1.2m high. The planned CoM Trajectory for climbing the
stairs is shown in Fig. 8.

In terms of contacts, the feet can generate forces and
torques subjected to the contact model (6) to (9). In
contrast to the unilaterality of the feet, the hands are
modeled as bilateral contacts. Furthermore, it is assumed
that the hands can only transmit forces and no torques.



Fig. 8: Planned CoM Trajectory for the stair setup.
The contact sequence is [L1, R1], [L1, R1, H1], [R1, H1],
[L2, R1, H1], [L2, H1], [L2, R2, H1], [L2, R2], [L2, R2, H2]...

VIII. Final discussion

This paper presented a full pipeline to allow a hu-
manoid robot to acquire information of the surrounding
terrain, plan a multi-contact solution to go from an initial
to a final stance, and execute the generated trajectory
using a passivity-based controller. During execution of
the trajectories, contact friction was found to be one of
the major limiting factors for achieving a good perfor-
mance. Despite using a conservative value for the friction
coefficient in the controller, end effectors in contact often
started to slide in situations with low normal forces.
The main reason for this behavior was the high joint
friction combined with required configurations close to
singularities. Both can cause a deviation between the
real contact wrenches and the ones commanded by the
controller. Additionally, the base state estimation relies
on the assumption that the contacts do not slide and are
totally rigid. A sliding contact can lead to a constant
deviation of the robot position in the world, while the
real contact stiffness might cause oscillations within the
control loop.

When trying the full trajectory for the stairs in one
shot, the base state estimation accumulates some cen-
timeters of error, which can lead to the foot striking one
step of the stair. However, the soft impedance control lets
the robot slide the frontal part of the foot over the edge of
the step to overcome this problem. It is important to have
a rather soft stiffness so the reaction forces generated do
not destabilize the overall balance.

The RGB-D sensor used for perception proved to be
prone to calibration errors, which results in incorrect
scaling and offsets of the detected planes. This was
overcome by choosing a more conservative foot size in
the planner.

Much work has been done in the field of on-line plan-
ning with reduced models, yet it makes sense to focus on
completeness and build a planning concept that enables
the use of the full capabilities of the robot. To achieve
this, a more general contact planner should replace the
step planning component, making it possible to plan
unilateral contacts based on perception data using all
end effectors. Furthermore, as a future work we want
to explore planing methods that provide more dynamic
trajectories between statically stable configurations.
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