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Abstract— Series-Elastic Actuators (SEA) have
been proposed as a technology to build robust hu-
manoid robots. The aim of this work is to generate effi-
cient and robust walking for such robots. We present a
combined approach which exploits the system dynam-
ics through optimization based trajectory generation
and a robust control scheme. The compliant actua-
tor dynamics are explicitly modeled in the optimal
control problem. For local stabilization, a passivity
based tracking controller distributes the required con-
trol forces onto the available contacts. Additionally,
a predictive control scheme for step adaptation is
presented, which provides feasible contact points in
the future. Using a reduced model, this combines
efficient walking with robustness against model or
environment uncertainties and external disturbances.

I. Introduction

Electrically actuated legged robots are usually oper-
ated in a very careful manner as abrupt external forces
generated by the dynamics of the locomotion process
itself can damage the robot. In order to overcome this
limitation, series elastic actuators decouple the motor
via a spring from the link-side motion. The resulting
fourth order dynamics can be used to efficiently generate
locomotion patterns. This is most effective if the intrinsic
system behavior is used. Suitable trajectories can be
generated by analyzing Eigenmodes of the system [1]
or by application of numerical methods. In this work
we combine an optimization based trajectory generation
with a robust control framework.

On a SEA robot, not every dynamic link motion can
be generated due to actuator limitations. This depends
essentially on the combination of the motor and link
side inertia and the limits on the actuator itself. Some
state-of-the-art robots reduce this problem by having
their actuators concentrated in the trunk and hence have
very light weight links. This also allows the use of low
dimensional dynamic models with little error. However,
when developing a full-body universal humanoid robot,
at least some part of the actuators will be located in
the lower extremities, which motivates the use of models
with distributed mass. For these models, numerical tra-
jectory optimization is the established method for finding
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Fig. 1. Robot dynamically walking over an unmodelled see-saw
like obstacle.

feasible and optimal locomotion trajectories. In order
to benefit from the elastic actuation and to guarantee
the feasibility of the motions, this work is based on our
previously presented approach for trajectory generation
for cyclic walking patterns for elastic systems [2].

Using optimal trajectories alone will not lead to robust
walking due to uncertainties in the robot and environ-
ment model. Therefore, we use a tracking controller
which utilizes the currently active contacts to stabilize
the trajectory, which we previously presented in [3]. The
controller was evaluated for walking in [4] for simulated
rigid body robots. In this work, we present the usage
of this controller on a SEA robot and investigate stiff-
ness design considering the intrinsic system properties.
Special care is taken to minimize the control effort re-
quired to stabilize the system by keeping stiffness shaping
at a minimum. Second, we propose a step adaptation
scheme using predictive control that uses the center of
mass (CoM) dynamics and contact force constraints to
compute future steps. Based on these results, the next
whole-body trajectory is chosen and commanded to the
tracking controller.

For the experimental part, we use the series-elastic
biped robot C-Runner which was recently presented in
[5]. Experiments on flat floor show the general feasibility
and performance of the method, including an analysis of
the cost of transport. Walking over obstacles as shown
in Fig. 1 demonstrates the robustness.

This paper is structured as follows: First, we review
other robust walking robots with similar technologies in
Section II followed by the problem statement summa-
rizing the task at hand in Section III. The trajectory
generation of cyclic walking primitives is presented in
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Fig. 2. Overview of the approach to generate optimal and robust walking.

Section IV. Afterwards the step planning with feasible
contact forces is discussed in Section V. Section VI
presents a short recapitulation of the balancing controller
and addresses the stiffness computation in detail. Sec-
tion VII documents the SEA torque controller, which
is used to generate the torque demanded by the multi-
contact tracking controller. The results from the experi-
ments are discussed in Section VIII and Section IX while
Section X summarizes the work.

II. Related Work

The significance of mechanically robust and efficient
locomotion was recognized early in [6]. The first SEA
concept robots, like M2V2, demonstrated step adapta-
tion to maintain balance [7]. Complementary to that,
COMAN displayed ZMP based walking, but with high
immunity to disturbances [8]. Both robots featured flat
feet, in contrast to the works on ATRIAS (especially
MARLO and conceptually related robot Cassie), which
imitate the SLIP model. Those robots were built with
very light-weight legs and point feet and are thus always
underactuated in single support [9], [10]. Another SEA
robot is MABEL [11] which has shown high performance
walking and running.

Limit cycle walking with underactuated mechanisms
was studied from a control oriented perspective by means
of the hybrid zero dynamics approach in [12], [13]. In
this concept, a set of virtual constraints is used in order
to parameterize the robot configuration throughout a
step. The shape of the virtual constraints is determined
via optimization such that the remaining hybrid zero
dynamics under the effect of the impacts at touch-down
of swing leg admits a stable limit cycle. Extensions of this
concept include walking in 3D [14] as well as walking with
feet [13]. Moreover, the extension to compliant robots
has been presented in [15], where improved energetic
efficiency due to the compliance is reported.

Recently DURUS combined the efficiency of passive
elastic elements above the feet with rigid actuation in
all other directions. For maximum energy efficiency this
descision is understandable, but the general robustness
of a robot actuated with SEA in all joints is lost. This
robot is e.g. not robust against falling on the knees. The
Hybrid Zero Dynamics concept was used here to provide
trajectories and the control approach. This led to human
like gait with heel and toe phases in [16].

III. Problem Statement

This paper addresses the problem of generation op-
timal and robust walking trajectories for a soft-elastic,
planar, bipedal robot with distributed masses. The con-
cept is general and the aspects that can also be applied to
a rigid robot have been evaluated on a full 3D humanoid
[3], [17].

The approach is summarized in Fig. 2. A set of trajec-
tories are generated off-line by solving an optimal control
problem. During execution the SEA torque controller
abstracts the robot as a torque controlled robot. The
multi-contact balancing controller provides stabilization
of the trajectory using the feet currently in contact.
A continuous walking trajectory is assembled by the
pattern generator using step tasks produced by the step
planner. The stepping tasks are provided on-line using
the model predictive control based step planner. The step
planner is executed on touchdown of the swing foot and
computes which step should be taken next.

The configuration of the robot is described by

y =

[
x
q

]
∈ R9 (1)

with x ∈ R3 representing the base coordinates, con-
taining the horizontal translation, vertical translation
and base link rotation ϕ, and q ∈ R6 the joint angles.
The model dimensions match the robot used for the
experiments. Fig. 3 illustrates the coordinates in detail.
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x

Fig. 3. Kinematic of the planar robot. Left: Schematic motion of
the swing foot during the single-support phase for the step task k.
Right: Closed kinematic Loop during the double-support phase.

The link side dynamics of the robot addressed in this



paper is described by

M(y)ÿ +C(y, ẏ)ẏ + g(y) =

[
0
τ

]
+

NC∑
i=0

JT
C,iWC,i (2)

with the inertia matrix M ∈ R9×9, Coriolis matrix C ∈
R9×9, gravity terms g ∈ R9, joint torques τ ∈ R6, contact
Jacobians JC,i ∈ R3×9, and contact wrenches WC,i ∈
R3 with the index i to distinguish between contacts. For
the sake of clarity, the dependencies will be omitted for
the remainder of the paper. The walking gait is defined
by two phases, the single support phase (SSP) and the
double support phase (DSP), which causes the number of
contacts NC to switch between NC = 1 and NC = 2. The
motor dynamics are coupled to the link side dynamics
through linear springs forming an SEA:

τ = K(θ − q) (3)

Bθ̈ = τm − τ (4)

whereK ∈ R6×6 is the stiffness matrix, θ ∈ R6 the motor
positions, B ∈ R6×6 the projected motor inertia matrix,
and τm ∈ R6 the motor torques.

In order to achieve efficient locomotion, a motor torque
cost function is used for the planning as approximation
for the electric cost of transport:

Γ =

∫ tf

0

τTmτmdt (5)

with the trajectory duration tf . A feasible motion is
ensured by satisfying the contact force constraints

WC,i =

fC,i,x

fC,i,z

τC,i

 fC,i,z ≥ 0
|fC,i,x| ≤ µifC,i,z

pC,i ∈
[
pmin

C,i , p
max
C,i

] (6)

with the tangential foot forces fC,i,x the normal foot
forces fC,i,z, foot torques τC,i, and the center of pressure
(CoP) pC,i = τC,i/fC,i,z limited by the foot geometry
pmin

C,i , p
max
C,i .

On kinematic level, link position limits and environ-
ment collision constraints have to be ensured. For the ac-
tuator side, the motor speed and torque are constrained
by ∣∣∣θ̇∣∣∣ ≤ θ̇max and |τm| ≤ τm,max. (7)

Given a series of cyclic gait primitives, which alternate
between SSP and DSP on both legs, a continuous trajec-
tory can be provided. In order to stabilize this trajectory
with minimal control effort, the intrinsic system stiffness
K should be used to compute the compliance parameters
for the tracking controller (see Sec. VI).

As the stability region of a pure balancing control ap-
proach is small, future step positions have to be adapted
to extend the region (see Sec. V).

IV. Trajectory Generation

Providing trajectories which take into account all
dynamic effects of a SEA walking robot is currently
only possible off-line due to the high computational
effort required. In this work, we use the optimal control
problem formulation presented in [2] to generate cyclic
walking primitives. This formulation explicitly models
the actuator dynamics.

The robot can be completely parameterized by q if we
assume that one foot is always in contact with the ground
during the gait. Thus, the base state can be computed
using the contact constraint of dimension 3

HSTANCE = I (8)

where HSTANCE is the homogeneous transformation ma-
trix of the position of the stance foot, I the identity
matrix [17]. In order to provide higher derivatives of the
state y, equivalent velocity level constraints are required.
However, in order to be independent of this restriction,
the complete state y is used to express the equations of
motion (2). The solution of inverse dynamics is uniquely
defined, given the states y, ẏ and ÿ, and thus are τ and
WC,i but only in single support (2). To compute τ and
WC,i during the double support phase, the redundancy
of the right-hand side must be resolved:

O(y, ẏ, ÿ) =

[
0
τ

]
+
[
α(t)JTC,1 (1−α(t))JTC,2

] [WC,1

WC,2

]
(9)

which is achieved using the given weights α [2], and
then solving the equation system using a least-square
solver. Note, that the left-hand side of (2) is shortened
for simplicity to O(y, ẏ, ÿ).

To compute τm, (3) is differentiated twice and com-
bined with (4) into:

τ̈ = K(θ̈ − q̈) = K(B−1(τm − τ )− q̈). (10)

The information on τ̈ can be provided by differentiating
(2) twice:

Ö(y, ẏ, ÿ,
...
y ,

....
y ) =

[
0
τ

]
+ . . . (11)

. . . +

NC∑
i=0

[J̈C,iWC,i + 2J̇C,iẆC,i + JC,iẄC,i]

and removing any existing redundancy using (9). This
allows us to minimize the cost function (5) w.r.t. the
inequality constraints mentioned in Sec. III. Additionally,
the kinematics of each step is enforced by using the
following equality constraints of dimension 3

H∆(0)
!
= Hstart (12)

H∆(t)
!
= HDSP ∀t ∈ [tsw, tf ] (13)

on the position of the swing foot H∆(t) during the dou-
ble support phase defined by the interval [tsw, tf ]. which
fully define the cyclic step geometry. Constraints on the



foot velocity at touchdown enforce an impact invariant
gait. Cyclic motions are guaranteed by using a linear
projector on the parameter space of the optimization
problem.

The infinitely dimensional trajectory optimization
problem is discretized using B-Splines for parameterizing
y(t) and α(t). The cost function and the constraints are
evaluated at discrete points during the motion.

Based on this optimization problem, we generate a set
of trajectories for a given task space. In this example,
the task space contains only the step length, but can
also be used for larger task spaces as shown in [4]. The
tasks can then be generalized using machine learning
methods presented in [4], which introduces little error
when predicting arbitrary steps in the whole range and
produces a very compact representation of the optimal
results.

In order to transition between two primitives, a non-
cyclic interpolated trajectory is generated by blending
two step primitives in the configuration space [4]:

y(t) = β(t) · y1(t) + (1− β(t)) · y2(t) (14)

where yn(t) are the two trajectories to be blended and
β(t) is a third order B-Spline which is twice continuously
differentiable and thus ensures continuous second deriva-
tives of the blended primitives. The latter is essential for
generating a trajectory which results in continuous states
at the motor side of each joint. The transition between
y1(t) and y2(t) happens completely during the SSP.

In order to avoid transitions between primitives which
lead to infeasible contact forces we propose the step
planning algorithm presented in the following section.

V. Step Planning

In order to increase the robustness of robotic walking,
step adaptation as a reaction to disturbances is essential.
To combine the use of primitives with the reactivity of
on-line control, two adaptation schemes are applied. The
primary adaptation uses a predictive control scheme with
a concentrated mass model to compute feasible next foot
steps based on the current CoM position of the robot and
the stepping tasks k. For the selection of future steps we
formulate the locomotion goal as a cost function:

Γ = a0(x̂c,x − xc,x(tp)) + a1( ˙̂xc,x − ẋc,x(tp)) . . .

. . .+ a2

∫ tp

0

ẍ2
c,xdt (15)

where xc,x(t) is the horizontal CoM position, tp the
prediction horizon, x̂c,x the desired terminal CoM po-
sition, and ai are constant weights. This cost function is
minimized under the constraints for contact forces given
by (6).

The required contact forces for a motion during the
single support phase can be computed by:

WC(t) = AdjT(Hc,foot(xc(t),k)) ·m(g + ẍc(t)) (16)

whereHc,foot(xc(t),k) is the transformation matrix from
the CoM to the current contact frame and Adj(·) is the
adjoint mapping. When multiple contacts are active, the
redundancy of the contact forces is resolved in the same
manner as (9). Additionally, the maximum step length is
constrained.

The CoM motion is parameterized using a B-Spline,
which is fixed at the start to match the current state of
the CoM of the robots. The positions of future contacts
are parameterized by their relative position to the start-
ing point. This forms a non-linear optimization problem
which is solved on-line.

This predictive control scheme is executed once at
each touchdown of the swing foot, and computes the
trajectory for the next step. A feasible next step can be
computed in at most 100ms and the new trajectory can
be commanded to the tracking controller when the next
step starts.

From this computation, the next task k is extracted
and the associated primitive is commanded to the robot.
During the SSP the predictive control scheme is not used,
hence it can only act against disturbances which have
already occured.

During the execution of the step trajectory, the next
stance is adjusted based on continuous feedback [18]. The
Cartesian swing foot trajectory HDSP,d is modified to
H ′DSP,d as follows:

H ′DSP,d =

 b0 ·∆xc,x + b1 ·∆ẋc,xI
0

0 0 1

HDSP,d

(17)
where ∆xc,x is the horizontal CoM position error and bi
are constant weights. The two concepts complement each
other as a better model with constraints is used in the
predictive part and the heuristic part provides robustness
against disturbances during the step.

VI. Tracking Control

In order to follow the trajectory, we use a simplified
version of our controller presented in [3], summarized
below. The provided trajectories are handed to the con-
troller as desired states and derivatives y, ẏ, and ÿ. The
controller also receives the planned contact forces and
the contact state.

In order to maintain the balance, the controller sta-
bilizes the CoM position xc and the hip orientation Rb

by generating a Cartesian compliance force W x ∈ R3

consisting of the stiffness matrix KCoM and damping
matrix DCoM. Each foot can be operated in two different
modes. In the first one, the end effectors are actively used
for supporting the robot (balancing mode) by generating
the required contact wrenches W bal. In the interaction
mode, the pose of the foot is stabilized by a Cartesian
compliance generating W int. Depending on the mode,
the foot Jacobian is part of Jbal (balancing) or J int

(interaction).



As detailed in [3], the desired error dynamics of the
closed loop system can be defined as

Λ

 ∆v̇x
∆v̇bal

∆v̇int

+ µ

 ∆vx
∆vbal

∆vint

 = W ext −

W x

W bal

W int

 (18)

with the end effector velocities vbal = Jbal [ vT
x q̇T ]

T
and

vint = J int [ vT
x q̇T ]

T
. The Cartesian inertia and Coriolis

matrix are given by Λ and µ. Note that the translational
velocity of the CoM and the rotational velocity of the hip
are stacked into vx. The ∆ in (18) denotes the difference
between the actual state of the system and the desired
trajectory.

Comparing (18) with the dynamic model in task space
coordinates (detailed in [3]) leads to the controller[
0
τ

]
=

[
mg0 −W x

0

]
−
[
JT

bal,u JT
int,u

JT
bal,l JT

int,l

] [
W bal

W int

]
+

[
W ff

τff

]
(19)

The Jacobian matrices are partitioned into Jbal,u (non-
actuated), Jbal,l (actuated) and J int,u, J int,l. The last
part represents feedforward terms similar to PD+ control
as detailed in [3].

The controller (19) can be computed within two steps:
At first, we can use the first line to obtain W bal, which is
then mapped via the second line to the control torques τ .
Note that the first line of (19) is underdetermined, which
represents the force distribution problem of balancing on
multiple end effectors. The redundancy is resolved via a
quadratic optimization

min
W bal

(
W bal −W d

bal

)T
Q
(
W bal −W d

bal

)
(20)

with respect to the constraint

0 = mg0 −W x − JTbal,uW bal − JTint,uW int +W ff (21)

and to the contact model (6). The positive definite weight
matrix is given by Q. The balancing wrenches are then
mapped to the control torque via the second line of (19):

τ = −JTbal,lW bal − JTint,lW int + τff. (22)

In order to increase efficiency of the tracking controller,
we propose to replicate the intrinsic stiffness with the
CoM impedance force W x. This significantly lowers the
required control effort, as the motor does not have to
move to generate this behavior. In the SSP, the mecha-
nism is constrained by

0 =
[
J foot,u J foot,l

] [vx

q̇

]
. (23)

where J foot,u and J foot,l denote the upper and lower part
of the foot Jacobian. Solving for vx leads to

vx = −J−1
foot,u J foot,l︸ ︷︷ ︸
Jconstr,CoM

·q̇ (24)

The resulting CoM stiffness can then be computed using:

KCoM = (Jconstr,CoMK
−1JTconstr,CoM)−1 (25)

which is a local approximation of the real behavior as
the state-dependent Jacobian introduces a more complex
relation. For the double support phase (DSP), both leg
stiffnesses are in parallel:

KCoM,DSP = KCoM,R +KCoM,L (26)

Extending this idea to the swing foot impedance, the
required constraint Jacobian Jconstr,SF is obtained by:

Jconstr,SF =

[
JT

foot,u

JT
foot,l

] [
Jconstr,CoM

I

]
(27)

KSF = (Jconstr,SFK
−1JT

constr,SF)−1 (28)

In order to compute the diagonal damping matrix
D, which is required for the impedance control of the
CoM and of the swing foot, the Cartesian mass must be
determined first by

M cart = (JconstrM
−1JT

constr)
−1. (29)

based on the same constraint. Computing DCoM, i.e.
damping design for non-diagonal KF and KCoM can be
done using the generalized Eigenvalue method.

VII. Series Elastic Actuator Control

The series elastic actuator dynamics are given by (4).
In this approach, we use a motor position control to
remove especially the effects of the motor side friction.
A cascaded control structure to realizes a motor position
control:

τm =KV,P · ( ˙̂
θ − θ̇) +KV,I(θ̂ − θ) +B · θ̈d + τ d

˙̂
θ =KP · (θd − θ) + θ̇d (30)

where θ̂ is the input of the lower velocity level cascade
and τ d is the desired link side torque. This torque is
converted to a desired joint position with:

θd = K−1 τ d + q. (31)

VIII. Results and Experiments

To verify the effectiveness of this approach, we con-
ducted several experiments on the bipedal robot C-
Runner, for which hardware details are available in [5].
C-Runner is a highly capable planar robot with series
elastic actuators and a weight of 67 kg. The base of the
robot is free to move in the sagittal plane (x, z and
ϕ) while the other directions are constrained using a
rotating boom which guides the robot. The robot has
three actuated joints per leg. The flat feet allow the robot
to balance without making a step.

For comparing this robot to other systems, it is most
useful to look at the characteristic numbers regarding
actuation of C-Runner: the motors have a maximum
instantaneous motor torque of 400 Nm, a maximum
motor velocity of 5.2 rad/s, a projected motor inertia
of 1.62 kg · m2, and a spring stiffness of 451 Nm/rad,
560 Nm/rad and 423 Nm/rad for hip, knee and ankle joints
respectively. The admissible link side torque is limited



Fig. 4. Wmax is the which is absorbed when a horizontal distur-
bance acts on the robot

to 200 Nm. The link side inertia in the hip joint for
a typical configuration is 2.7 kg · m2. The motor po-
sition controller was parameterized with KP = 66.831/s,
KV,I = 25.92Nm/rad and KV,P = 95.31Nm/rad·s.

The solution of the optimal control problem was de-
scribed with 360 parameters for each step trajectory. The
standard step timing with 0.6 s for the SSP and 0.2 s for
the DSP was used. The optimization solution is restricted
to use only 60% of the maximum motor velocity and
allowed ZMP range. Additionally, the motion was con-
strained to lift the swing foot by at least 20 mm during
the forward swing.

The step planner has a prediction horizon of 2 s with a
discretization of 0.1 s at which the cost function and the
constraints are evaluated. The B-Spline parameterizing
the CoM trajectory has 20 free parameters.

For the joint stiffness given above, the intrinsic Carte-
sian stiffness of the CoM in the SSP computes to:

KCoM =

 2220N/m −2925N/m −794N/rad
−2925N/m 34205N/m −890N/rad
−794Nm/m −890Nm/m 565Nm/rad

 (32)

these intrinsic stiffness values are not optimal for stability
of the robot, given (6). It is possible to compute the
optimal stiffness, starting from the maximum admissible
horizontal instantaneous CoM force

Fx,max =
mgsrem

h
(33)

where m is the robots mass, g the gravity, srem the re-
maining support polygon in the direction the disturbance
is pushing and the CoM height h. As illustrated in Fig. 4,
the energy required Wmax to push the robot over, given
linear horizontal stiffness Kx is

Wmax(Kx) =
Kx

2

[
mgsrem

hKx +mg

]2

(34)

with srem the support polygon available at zero compli-

ance force. Using ∂Wmax/∂Kx
!
= 0 we can obtain the

optimal spring stiffness Kx,opt, for this particular robot
this approach yields approximately 700Nm/m.

From our practical experience it is additionally good
to decouple the x coordinate from z and φ:

KCoM,var =

Kx,opt 0 0
0 Kz Kzφ

0 Kzφ Kφ

 2000 ≤ Kz ≤ 8000
200 ≤ Kφ ≤ 1000
−1000 ≤ Kzφ ≤ 1000

(35)
which leaves the variables [Kz,Kφ,Kz,φ ], bounded in the
listed ranges . This desired Cartesian stiffness again can

be realized intrinsically by introducing biarticulation, as
mentioned in [5]. In the future this robot will be equipped
with the following biarticulation possibilities:

Kvar =

K11 K12 0
K12 K22 K23

0 K23 K33

 ;

200 ≤ K11 ≤ 800
200 ≤ K22 ≤ 800
200 ≤ K33 ≤ 800
−1000 ≤ K12 ≤ 1000
−1000 ≤ K23 ≤ 1000

(36)

To find the best combination of SEA spring and
biarticulation, we minimize the Frobenius norm over the
difference between the projected intrinsic stiffness using
(25) and KCoM,var. The resulting stiffness matrices are:

Kopt =
[

200 141 0
141 200 133
0 133 234

]
;KCoM,opt,SSP =

[
837 45 −404
45 1097 237
−404 237 282

]
(37)

for a typical configuration. The minimization was exe-
cuted over a set of motion primitives, considering the
different contacts with the environment. These stiffness
values reduce the torque bandwidth of the robot.

However, there are effectively three points to take
into account. (a) On the real system, using the current
intrinsic stiffness as control stiffness leads to high gains
as e.g. on the base position, which can be a problem
in the presence of sensor noise. (b) KCoM and can
be reduced by the contact stiffness depending on the
configuration. (c) Because the force distribution problem
respects (6), the use of the intrinsic system stiffness is not
fully realized when the constraints are active.

A. Experiment 1

In the first experiment C-Runner walks a full circle, a
distance of approx. 18 m while maintaining a velocity of
0.175 m/s. The cost of transport for walking is 0.13 for the
link side, computed with E =

∫
q̇T · τdt as energy, 1.21

for the complete mechanical subsystem, computed with

E =
∫
θ̇

T
· τmdt thus including the motor side dynamics

(4) and motor friction. The system power required to
produce this gait is illustrated in Fig. 6. Fig. 5 shows
that these high power peaks correlate with quick changes
of link side torque. This plot especially shows how the
relative degree of four between the joint position and
the motor torque creates very demanding motor torque
spikes. Accounting for losses in the power electronics, the
electric cost of transport computes to 3.16, which does
not include power for sensing and computation. Careful
design of the controller behavior during touchdown and
lift-off is essential to reduce the power losses to a min-
imum. We found that a longer time span for switching
from impedance to force control improves the behavior.
However, there is very little time (200 ms) during the
double support phase to realize these transitions.

Fig. 7 shows the tracking of the CoM during a phase of
constant velocity. Reasonably good tracking is achieved
in these phases. The measured foot positions are dis-
torted by sensor noise in the base coordinates. During
this experiment the predictive step adaptation generated
the CoM trajectory depicted in Fig. 8, which illustrates
the nominal case in which the step adaptation can reach
the desired goal.
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B. Experiment 2

In the second experiment, the robot walks across an
obstacle as shown in Fig. 1. The robot has no model
of the 100 mm high obstacle which rises in two steps.
Thus, the planned and the executed trajectory differ
significantly. After traversing the front part of the ob-
stacle, the obstacle tips over and introduces significant
disturbance. This scenario shows the advantages of force
controlled walking as unforeseen changes in the floor
height create no problems. The step adaptation helps
stabilizing the robot when the see-saw tips over and
introduces a disturbance.

IX. Conclusions

Increasing walking velocity uses more of the system ca-
pabilities leaving less room for additional control torque
to be realized. This is especially the case as the con-
trol torque often contains high frequency components
which require significant motor torque to be successfully
tracked.

As we use a cascade control architecture containing a
balancing and a motor position controller (see Fig.2), it
is essential that τ d given by the balancing controller can
be tracked. For this, the motor position controller has to
have significantly faster settling time than the balancing
controller. However, this is not always possible because of
the limitations of the actuator speed θ̇ and motor torque
τm. This results in limited dynamics of τ which cause a
loss of efficiency in the control concept. There are three
ways to remedy this problem:

• Acceptance of the system behavior and replicating
it in the tracking controller. However not all aspects
of the current intrinsic behavior are desired.

• Adaptation of the joint stiffness K to realize the
desired behavior. While this will improve the regu-
lation behavior, it significantly reduces the ability
to produce quick link motions, which limits e.g.
the step adaptation capabilities. Using the stiffness
Kopt, it is not possible with the trajectory gener-
ation to generate primitives when keeping the step
timing and step length, only much slower walking is
feasible.

• Changing the SEA unit such that it can realize
higher dynamics in τ at the link side. For example,
this could be done by adding a damper [19] to the
coupling. This reduces the relative degree between
τ and τm, enabling high dynamics on the link side
as effect of the motor-side limitations are differently
mapped to the torque dynamics. This also allows to
implement the damping, normally implemented by
the controller, intrinsically.

We also evaluate trajectories generated for an equiva-
lent rigid body robot, but it is not possible to generate
smooth walking with a velocity above 0.1 m/s. This can
be attributed to nominal torque profiles required by the
rigid body trajectories which cannot be generated by the
SEAs.
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To change the natural behavior as little as possible,
we used a sub-critical damping of ξ = 0.3 with some
additional damping provided by the friction inherent to
the mechanism.

There are no limitations which would restrict this
method from producing similar gait for straight walking
on a non-planar robot.

The cost of transport in comparison to robots like
DURUS is still high, however DURUS is only compliant
in the normal direction of the contact. C-Runner in com-
parison provides compliance in all joints. This compliance
comes at a cost, but also provides more robustness e.g.
when falling. While exploiting the natural dynamics is
possible in this theoretical framework, the system design
must still be improved to realize improvements regarding
the cost of transport.

The essential dynamics of walking are covered in three
parts of this work. Trajectory planning, step planning,
and balancing all mainly deal with the CoM dynamics
and contact points. We keep the mathematical formu-
lations as similar as possible to avoid the use of proxy-
constraints to enforce restrictions of underlying control
methods in the planning phase. Only the values of the
contact force constraints differs on the levels, the plan-
ning always being more conservative than the control.

X. Future Work

The trajectory generation process can be extended to
human like walking, which includes underactuation. Also
the framework is general enough but requires moderate
extension to realize running.

On the system design level, the stiffness of the robot is
found to be too high for unmodified use as control stiff-
ness. However, lower stiffness alone decreases the torque
control bandwidth. We will investigate the possibilities of
different coupling mechanisms, such as intrinsic damping,
to maintain bandwidth and lower stiffness at the same
time.
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